Ablation of Sim1 Neurons Causes Obesity through Hyperphagia and Reduced Energy Expenditure

نویسندگان

  • Dong Xi
  • Nilay Gandhi
  • Meizan Lai
  • Bassil M. Kublaoui
چکیده

Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1(+/-) mice and conditional postnatal Sim1(-/-) mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity, but no decrease in energy expenditure. Bilateral ablation of the PVH causes obesity due to hyperphagia and reduced energy expenditure. It remains unknown whether Sim1 neurons regulate energy expenditure. In this study, Sim1cre mice were bred to homozygous inducible diphtheria toxin receptor (iDTR) mice to generate mice expressing the simian DTR in Sim1 cells. In these mice, Sim1 neuron ablation was performed by intracerebroventricular (ICV) injection of diphtheria toxin. Compared to controls, mice with Sim1 neuron ablation became obese (with increased fat mass) on a chow diet due to increased food intake and reduced energy expenditure. In post-injection mice, we observed a strong inverse correlation between the degree of obesity and hypothalamic Sim1 expression. The reduction in baseline energy expenditure observed in these mice was accompanied by a reduction in activity. This reduction in activity did not fully account for the reduced energy expenditure as these mice exhibited decreased resting energy expenditure, decreased body temperature, decreased brown adipose tissue temperature, and decreased UCP1 expression suggesting an impairment of thermogenesis. In injected mice, hypothalamic gene expression of Sim1, oxytocin (OXT) and thyrotropin releasing hormone (TRH) was reduced by about 50%. These results demonstrate that Sim1 neurons in adult mice regulate both food intake and energy expenditure. Based on the body of work in the field, feeding regulation by Sim1 neurons likely occurs in both the PVH and medial amygdala, in contrast to energy expenditure regulation by Sim1 neurons, which likely is localized to the PVH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation.

The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key bra...

متن کامل

Paraventricular Nucleus Sim1 Neuron Ablation Mediated Obesity Is Resistant to High Fat Diet

Single minded 1 (SIM1) is a transcription factor involved in brain patterning and control of energy balance. In humans, haploinsufficiency of SIM1 causes early-onset obesity. Mice deficient in the homologous gene, SIM1, also exhibit early onset obesity and increased sensitivity to a high fat diet. SIM1 is expressed in several areas of the brain implicated in control of energy balance including ...

متن کامل

Sim1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice.

Haploinsufficiency of the transcription factor gene Sim1 has been previously implicated in hyperphagic obesity in humans and mice. To investigate the relation between Sim1 dosage and hyperphagia, we generated sim1-knockout mice and studied their growth and feeding behavior. Heterozygous mice weaned on standard chow consumed 14% more food per day than controls and developed obesity, hyperinsulin...

متن کامل

Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice.

Single-minded 1 (Sim1) encodes a transcription factor essential for formation of the hypothalamic paraventricular nucleus (PVN). Sim1 haploinsufficiency is associated with hyperphagic obesity and increased linear growth in humans and mice, similar to the phenotype of melanocortin 4 receptor (Mc4r) mutations. PVN neurons in Sim1(+/-) mice are hyporesponsive to the melanocortin agonist melanotan ...

متن کامل

LMO4 is essential for paraventricular hypothalamic neuronal activity and calcium channel expression to prevent hyperphagia.

The dramatic increase in the prevalence of obesity reflects a lack of progress in combating one of the most serious health problems of this century. Recent studies have improved our understanding of the appetitive network by focusing on the paraventricular hypothalamus (PVH), a key region responsible for the homeostatic balance of food intake. Here we show that mice with PVH-specific ablation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012